19 resultados para Relaxation

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of wurtzite and zinc blende InAs-GaAs (001) core-shell nanowires grown by molecular beam epitaxy on GaAs (001) substrates has been investigated by transmission electron microscopy. Heterowires with InAs core radii exceeding 11 nm, strain relax through the generation of misfit dislocations, given a GaAs shell thickness greater than 2.5 nm. Strain relaxation is larger in radial directions than axial, particularly for shell thicknesses greater than 5.0 nm, consistent with molecular statics calculations that predict a large shear stress concentration at each interface corner. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conformational characteristics of poly(dimethylsilmethylene), poly(dimethylsilethene), poly(dimethylsilethane) and a related material, poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentane), have been investigated using the method of molecular mechanics. In this method, a quantitative analysis of the factors affecting the nature and magnitude of the bond rotation potentials governing their conformational behaviour has been undertaken. Along with their structural data, the results obtained were employed to calculate a variety of conformationally-dependent properties for these polymers, including the characteristic ratio, the dipole moment ratio and the mean-square radius of gyration. In addition, the dielectric relaxation behaviour of two samples of poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentane) with molar masses Mw = 28000 and Mw = 46000 respectively, have been studied as a function of temperature (179K-205K) and frequency (100-105Hz). Activation energies for the α-relaxation process and Davidson-Cole empirical distribution factors have been calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The further development of the use of NMR relaxation times in chemical, biological and medical research has perhaps been curtailed by the length of time these measurements often take. The DESPOT (Driven Equilibrium Single Pulse Observation of T1) method has been developed, which reduces the time required to make a T1 measurement by a factor of up to 100. The technique has been studied extensively herein and the thesis contains recommendations for its successful experimental application. Modified DESPOT type equations for use when T2 relaxation is incomplete or where off-resonance effects are thought to be significant are also presented. A recently reported application of the DESPOT technique to MR imaging gave good initial results but suffered from the fact that the images were derived from spin systems that were not driven to equilibrium. An approach which allows equilibrium to be obtained with only one non-acquisition sequence is presented herein and should prove invaluable in variable contrast imaging. A DESPOT type approach has also been successfully applied to the measurement of T1. T_1's can be measured, using this approach significantly faster than by the use of the classical method. The new method also provides a value for T1 simultaneously and therefore the technique should prove valuable in intermediate energy barrier chemical exchange studies. The method also gives rise to the possibility of obtaining simultaneous T1 and T1 MR images. The DESPOT technique depends on rapid multipulsing at nutation angles, normally less than 90^o. Work in this area has highlighted the possible time saving for spectral acquisition over the classical technique (90^o-5T_1)_n. A new method based on these principles has been developed which permits the rapid multipulsing of samples to give T_1 and M_0 ratio information. The time needed, however, is only slightly longer than would be required to determine the M_0 ratio alone using the classical technique. In ^1H decoupled ^13C spectroscopy the method also gives nOe ratio information for the individual absorptions in the spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is concerned with investigations of the effects of molecular encounters on nuclear magnetic resonance spin-lattice relaxation times, with particular reference to mesitylene in mixtures with cyclohexane and TMS. The purpose of the work was to establish the best theoretical description of T1 and assess whether a recently identified mechanism (buffeting), that influences n.m.r. chemical shifts, governs Tl also. A set of experimental conditions are presented that allow reliable measurements of Tl and the N. O. E. for 1H and 13C using both C. W. and F.T. n.m.r. spectroscopy. Literature data for benzene, cyclohexane and chlorobenzene diluted by CC14 and CS2 are used to show that the Hill theory affords the best estimation of their correlation times but appears to be mass dependent. Evaluation of the T1 of the mesitylene protons indicates that a combined Hill-Bloembergen-Purcell-Pound model gives an accurate estimation of T1; subsequently this was shown to be due to cancellation of errors in the calculated intra and intemolecular components. Three experimental methods for the separation of the intra and intermolecular relaxation times are described. The relaxation times of the 13C proton satellite of neat bezene, 1,4 dioxane and mesitylene were measured. Theoretical analyses of the data allow the calculation of Tl intra. Studies of intermolecular NOE's were found to afford a general method of separating observed T1's into their intra and intermolecular components. The aryl 1H and corresponding 13C T1 values and the NOE for the ring carbon of mesitylene in CC14 and C6H12-TMS have been used in combination to determine T1intra and T1inter. The Hill and B.P.P. models are shown to predict similarly inaccurate values for T1linter. A buffeting contribution to T1inter is proposed which when applied to the BPP model and to the Gutowsky-Woessner expression for T1inter gives an inaccuracy of 12% and 6% respectively with respect to theexperimentally based T1inter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform numerical simulations on a model describing a Brillouin-based temperature and strain sensor, testing its response when it is probed with relatively short pulses. Experimental results were recently published [e.g., Opt. Lett. 24, 510 (1999)] that showed a broadening of the Brillouin loss curve when the probe pulse duration is reduced, followed by a sudden and rather surprising reduction of the linewidth when the pulse duration gets shorter than the acoustic relaxation time. Our study reveals the processes responsible for this behavior. We give a clear physical insight into the problem, allowing us to define the best experimental conditions required for one to take the advantage of this effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new family of commercial zinc alloys designated as ZA8, ZA12, and ZA27 and high damping capacity alloys including Cosmal and Supercosmal and aluminium alloy LM25 were investigated for compressive creep and load relaxation behaviour under a series of temperatures and stresses. A compressive creep machine was designed to test the sand cast hollow cylindrical test specimens of these alloys. For each compressive creep experiment the variation of creep strain was presented in the form of graphs plotted as percentage of creep strain () versus time in seconds (s). In all cases, the curves showed the same general form of the creep curve, i.e. a primary creep stage, followed by a linear steady-state region (secondary creep). In general, it was observed that alloy ZA8 had the least primary creep among the commercial zinc-based alloys and ZA27 the greatest. The extent of primary creep increased with aluminium content to that of ZA27 then declined to Supercosmal. The overall creep strength of ZA27 was generally less than ZA8 and ZA12 but it showed better creep strength than ZA8 and ZA12 at high temperature and high stress. In high damping capacity alloys, Supercosmal had less primary creep and longer secondary creep regions and also had the lowest minimum creep rate among all the tested alloys. LM25 exhibited almost no creep at maximum temperature and stress used in this research work. Total creep elongation was shown to be well correlated using an empirical equation. Stress exponent and activation energies were calculated and found to be consistent with the creep mechanism of dislocation climb. The primary α and β phases in the as-cast structures decomposed to lamellar phases on cooling, with some particulates at dendrite edges and grain boundaries. Further breakdown into particulate bodies occurred during creep testing, and zinc bands developed at the highest test temperature of 160°C. The results of load relaxation testing showed that initially load loss proceeded rapidly and then deminished gradually with time. Load loss increased with temperature and almost all the curves approximated to a logarithmic decay of preload with time. ZA alloys exhibited almost the same load loss at lower temperature, but at 120°C ZA27 improved its relative performance with the passage of time. High damping capacity alloys and LM25 had much better resistance to load loss than ZA alloys and LM25 was found to be the best against load loss among these alloys. A preliminary equation was derived to correlate the retained load with time and temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dielectric relaxation behaviour of a series of cyclic and linear poly(dimethylsiloxanes) with overline nn in the range 28 to 99 has been studied, as a function of temperature (142.0K-157.5K) and frequency (12-105Hz). Activation energies for the -relaxation process, Davidson-Cole empirical distribution factors, , and mean-square dipole moments per repeat unit, < 2> , have been calculated. Differences in values of H_act reflected restricted dipolar rotation for the cyclic structures, compared to the linear structures, over the range of molecular weights studied. The dielectric relaxation behaviour of a series of linear oligomers of methyl phenyl siloxane, with n in the range 4 to 10, a series of linear fractions of poly(methyl phenyl siloxane), with overline n_n in the range 31 to 1370, and a cyclic oligomer of mehyl phenyl siloxane, with n = 10, has been studied as a function of temperature (155.5K-264.0K) and frequency (12-105Hz). Activation energies for the -relaxation process, Davidson-Cole and Cole-Cole empirical distribution factors, and , respectively, and mean-square dipole moments per repeat unit have been calculated. The reduced flexibility of short methyl phenyl siloxane chains, compared to dimethyl siloxane chains, was apparent from a comparison of dipole moment ratios. The dilectric relaxation behaviour of poly(methyl hydrogen siloxane) and poly(n-hexyl methyl siloxane) has been studied as a function of temperature and frequency. A polysiloxane liquid crystal has been synthesised and its dielectric relaxation behaviour has been studied, as a function of temperature and frequency, in the liquid crystalline phase and below T_g. Poly(p-phenylene vinylene) and related oligomers have been synthesised and characterised by a variety of experimental techniques. The Kerr effect of two oligomeric fractions, in solution in PPG 2025, has been measured. The electrical conductivities of the undoped and I_2-doped polymer and oligomers have been measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Pregnancy is characterized by an inflammatory-like process and this may be exacerbated in preeclampsia. The heme oxygenase (HO) enzymes generate carbon monoxide (CO) that induces blood vessel relaxation and biliverdin that acts as an endogenous antioxidant. Materials and Methods: We examined the expression and localization of HO-1 and HO-2 in normal and preeclamptic placenta using reverse transcription polymerase chain reaction (RT-PCR), RNase protection assay, immunoblotting and immunohistochemistry. In addition, the effect of HO activation on tumor necrosis factor-alpha (TNF) induced placental damage and on feto-placental circulation was studied. Results: We provide the first evidence for the role of HO as an endogenous placental factor involved with cytoprotection and placental blood vessel relaxation. HO-1 was significantly higher at term, compared with first trimester placentae indicating its role in placental vascular development and regulation. HO-1 predominantly localized in the extravascular connective tissue that forms the perivascular contractile sheath around the developing blood vessels. HO-2 was localized in the capillaries, as well as the villous stroma, with weak staining of trophoblast. Induction of HO-1 caused a significant attenuation of TNF-mediated cellular damage in placental villous explants, as assessed by lactate dehydrogenase leakage (p 0.01). HO-1 protein was significantly reduced in placentae from pregnancies complicated with preeclampsia, compared with gestationally matched normal pregnancies. This suggests that the impairment of HO-1 activation may compromise the compensatory mechanism and predispose the placenta to cellular injury and subsequent maternal endothelial cell activation. Isometric contractility studies showed that hemin reduced vascular tension by 61% in U46619-preconstricted placental arteries. Hemininduced vessel relaxation and CO production was inhibited by HO inhibitor, tin protoporphyrin IX. Conclusions: Our findings establish HO-1 as an endogenous system that offers protection against cytotoxic damage in the placenta, identifies the HO-CO pathway to regulate feto-placental circulation and provides a new approach to study the disease of preeclampsia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate two numerical procedures for the Cauchy problem in linear elasticity, involving the relaxation of either the given boundary displacements (Dirichlet data) or the prescribed boundary tractions (Neumann data) on the over-specified boundary, in the alternating iterative algorithm of Kozlov et al. (1991). The two mixed direct (well-posed) problems associated with each iteration are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method, while the optimal value of the regularization parameter is chosen via the generalized cross-validation (GCV) criterion. An efficient regularizing stopping criterion which ceases the iterative procedure at the point where the accumulation of noise becomes dominant and the errors in predicting the exact solutions increase, is also presented. The MFS-based iterative algorithms with relaxation are tested for Cauchy problems for isotropic linear elastic materials in various geometries to confirm the numerical convergence, stability, accuracy and computational efficiency of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose two algorithms involving the relaxation of either the given Dirichlet data or the prescribed Neumann data on the over-specified boundary, in the case of the alternating iterative algorithm of ` 12 ` 12 `$12 `&12 `#12 `^12 `_12 `%12 `~12 *Kozlov91 applied to Cauchy problems for the modified Helmholtz equation. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose two algorithms involving the relaxation of either the given Dirichlet data (boundary displacements) or the prescribed Neumann data (boundary tractions) on the over-specified boundary in the case of the alternating iterative algorithm of Kozlov et al. [16] applied to Cauchy problems in linear elasticity. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of heteroepitaxially strained semiconductors at the nanoscale enables tailoring of material properties for enhanced device performance. For core/shell nanowires (NWs), theoretical predictions of the coherency limits and the implications they carry remain uncertain without proper identification of the mechanisms by which strains relax. We present here for the Ge/Si core/shell NW system the first experimental measurement of critical shell thickness for strain relaxation in a semiconductor NW heterostructure and the identification of the relaxation mechanisms. Axial and tangential strain relief is initiated by the formation of periodic a/2 〈110〉 perfect dislocations via nucleation and glide on {111} slip-planes. Glide of dislocation segments is directly confirmed by real-time in situ transmission electron microscope observations and by dislocation dynamics simulations. Further shell growth leads to roughening and grain formation which provides additional strain relief. As a consequence of core/shell strain sharing in NWs, a 16 nm radius Ge NW with a 3 nm Si shell is shown to accommodate 3% coherent strain at equilibrium, a factor of 3 increase over the 1 nm equilibrium critical thickness for planar Si/Ge heteroepitaxial growth. © 2012 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new bridge technique for the measurement of the dielectric absorption of liquids and solutions at microwave frequencies has been described and its accuracy assessed. 'l'he dielectric data of the systems studied is discussed in terms of the relaxation processes contributing to the dielectric absorption and the apparent dipole moments. Pyridine, thiophen and furan in solution have a distribution of relaxation times which may be attributed to the small size of the solute molecules relative to the solvent. Larger rigid molecules in solution were characterized by a single relaxation time as would be anticipated from theory. The dielectric data of toluene, ethyl-, isopropyl- and t-butylbenzene as pure liquids and in solution were described by two relaxation times, one identified with molecular re-orientation and a shorter relaxation time.· The subsequent work was investigation of the possible explanations of this short relaxation process. Comparable short relaxation times were obtained from the analysis of the dielectric data of solutions of p-chloro- and p-bromotoluene below 40°C, o- and m-xylene at 25°C and 1-methyl- and 2 methylnaphthalene at 50 C. Rigid molecules of similar shapes and sizes were characterized by a single relaxation time identified with molecular re-orientation. Contributions from a long relaxation process attributed to dipolar origins were reported for solutions of nitrobenzene, benzonitrile and p-nitrotoluene. A short relaxation process of possible dipolar origins contributed to the dielectric absorption of 4-methyl- and 4-t-butylpyridine in cyclohexane at 25°C. It was concluded that the most plausible explanation of the short relaxation process of the alkyl-aryl hydrocarbons studied appears to be intramolecular relaxation about the alkyl-aryl bond. Finally the mean relaxation times of some phenylsubstituted compounds were investigated to evaluate any shortening due to contributions from the process of relaxation about the phenyl-central atom bond. The relaxation times of triphenylsilane and phenyltrimethylsilane were significantly short.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isotropic scattering Raman spectra of liquid acetonitrile (AN) solutions of LiBF4 and NaI at various temperatures and concentrations have been investigated. For the first time imaginary as well as real parts of the solvent vibrational correlation functions have been extracted from the spectra. Such imaginary parts are currently an important component of modern theories of vibrational relaxation in liquids. This investigation thus provides the first experimental data on imaginary parts of a correlation function in AN solutions. Using the fitting algorithm we recently developed, statistically confident models for the Raman spectra were deduced. The parameters of the band shapes, with an additional correction, of the ν2 AN vibration (CN stretching), together with their confidence intervals are also reported for the first time. It is shown that three distinct species, with lifetimes greater than ∼10−13 s, of the AN molecules can be detected in solutions containing Li+ and Na+. These species are attributed to AN molecules directly solvating cations; the single oriented and polarised molecules interleaving the cation and anion of a Solvent Shared Ion Pair (SShIP); and molecules solvating anions. These last are considered to be equivalent to the next layer of solvent molecules, because the CN end of the molecule is distant from the anion and thus less affected by the ionic charge compared with the anion situation. Calculations showed that at the concentrations employed, 1 and 0.3 M, there were essentially no other solvent molecules remaining that could be considered as bulk solvent. Calculations also showed that the internuclear distance in these solutions supported the proposal that the ionic entity dominating in solution was the SShIP, and other evidence was adduced that confirmed the absence of Contact Ion Pairs at these concentrations. The parameters of the shape of the vibrational correlation functions of all three species are reported. The parameters of intramolecular anharmonic coupling between the potential surfaces in AN and the dynamics of the intermolecular environment fluctuations and intermolecular energy transfer are presented. These results will assist investigations made at higher and lower concentrations, when additional species and interactions with AN molecules will be present.